

Unravelling High-Yield Phase-Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates

Chi Sin Tang^{1,5}, Xinmao Yin^{1,3},Di Wu^{2,6}, Weilong Kong¹, Changjian Li⁷, Qixing Wang¹, Ming Yang⁴, Dianyu Qi², Fangping Ouyang⁶, Stephen J. Pennycook⁷, Yuan Ping Feng¹, Mark B. H. Breese^{1,3}, Shi Jie Wang⁴, Wenjing Zhang², Andrivo Rusydi^{1,5}, Andrew T. S. Wee^{1,5}

40

¹Department of Physics, Faculty of Science, National University of Singapore, 117542, Singapore

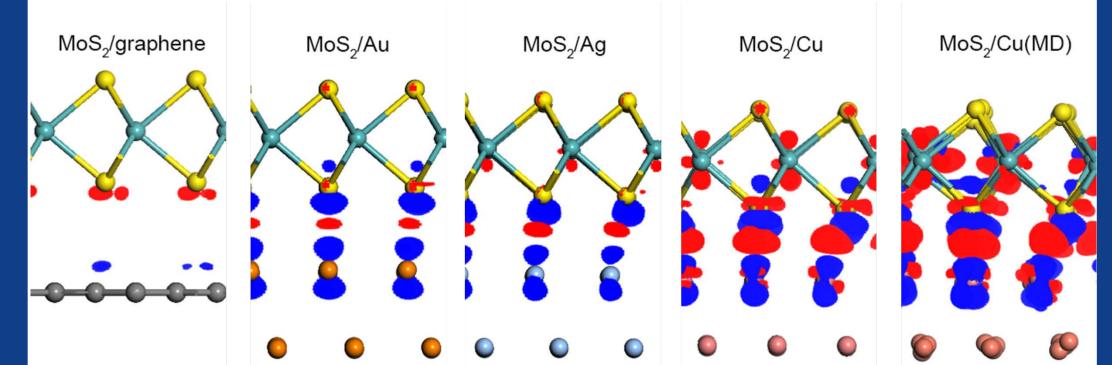
²International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China

³Singapore Synchrotron Light Source (SSLS), National University of Singapore, 117603, Singapore ⁴Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore

⁵NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore

⁶Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, China ⁷Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

Abstract


Two-dimensional transition metal dichalcogenides (2D-TMDs) possess unique polymorphic features such as the semiconducting 1H and quasi-metallic 1T' phases withiinteresting optical and electronic properties. They are utilized in novel electronic and photonic device applications. The favorable quasi-metallic nature of 1T'-phase 2D-TMDs makes 1H-1T' phase engineering processes a vital discipline for novel device applications. We report a high-yield 1H-1T' phase transition of monolayer-MoS₂/Cu and monolayer-WSe₂/Au via an annealing-based method. Comprehensive experimental and first-principle study is performed to study the mechanism underlying the high-yield phase transition process of 2D-TMDs on metallic substrates. While each 2D-TMD possess different intrinsic 1H-1T' energy barriers, option of substrates with higher chemical reactivity is important to enhance the 1H-1T' phase transition. It is enhanced by increasing the interfacial hybridizations via increased interfacial binding energy, larger charge transfer, shorter interfacial spacing and weaker bond strength. [Adv. Sci. 2019, 6, 1802093]

Substrate-dependent Study 05 06 04

Computational study comparing interfacial dynamics between 1H-phase MoS₂ on graphene, Au, Ag and Cu substrates

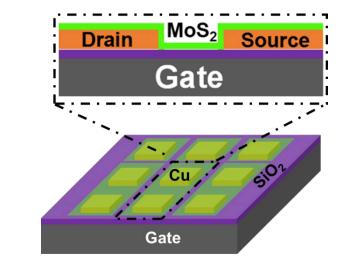
	Binding Energy (meV/Ų)	Charge Transfer (e-/f.u.)	Interfacial Distance (Å)
MoS ₂ /graphene	-20.5	0.005	3.38
MoS ₂ /Au	-55.7	0.017	2.68
MoS ₂ /Ag	-62.5	0.071	2.50
MoS ₂ /Cu	-90.8	0.126	2.16
MoS ₂ /Cu(MD)	-93.3	0.154	1.78

Appreciably stronger interfacial hybridization between 1H-phase monolayer- MoS_2 and Cu substrate (Cu > Ag > Au > graphene)

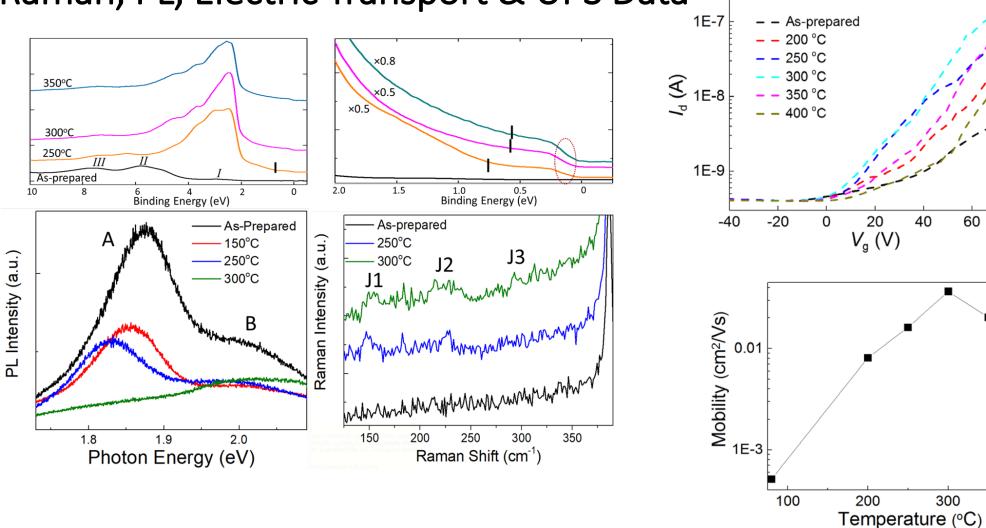


Interfacial hybridization of TMD/substrate systems increases with increasing chemical reactivity of the metallic substrates

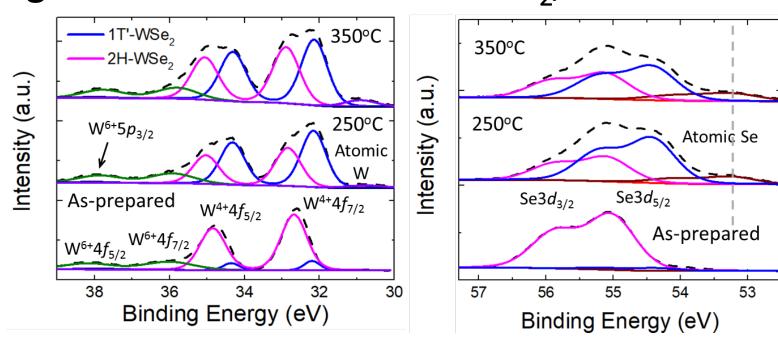
Ab initio molecular dynamics (MD) simulate annealing process of MoS₂/Cu system at 550K. Further enhancement in interfacial hybridization compared to pristine MoS₂/Cu system


Increased interfacial hybridization at interface induced is key mechanism leading to the 2H-1T' phase transition of 2D-TMDs

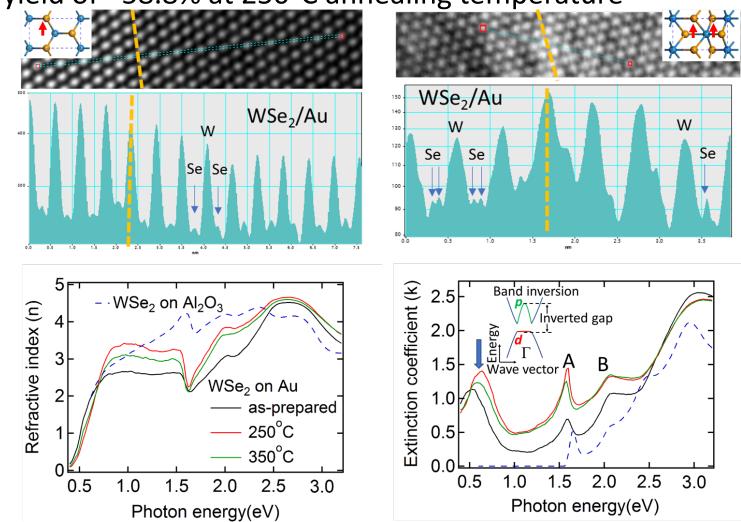
Annealing-based Phase Transition: MoS₂/Cu



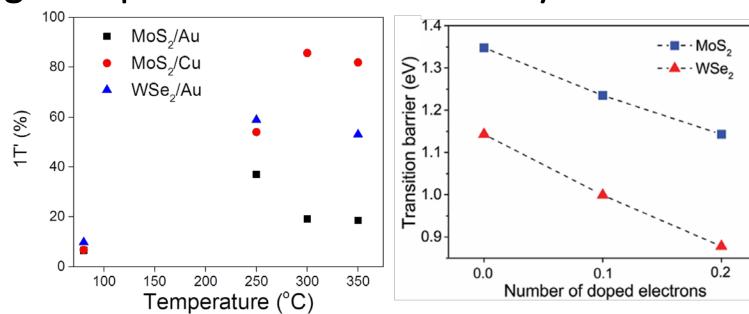
Experimental study percentage yield in MoS₂/Cu and WSe₂/Au.


~7% 1T'-MoS₂/Cu in pristine state Optimum yield of ~85.7% at 300°C annealing temperature

Raman, PL, Electric Transport & UPS Data



Annealing-based Phase Transition: WSe₂/Au



~10% 1T'-WSe₂/Au in pristine state

Optimum yield of ~58.8% at 250°C annealing temperature

Percentage 1T'-phase Yield in Different Systems

Conclusion

Collective general trends of this annealing-based phase transition study of 2D-TMDs on metallic substrates show that metallic substrate with high chemical reactivity and 2D-TMD with low intrinsic 1H-1T' energy barriers significantly dictate the yield of 1T'-phase 2D-TMD. Our study demonstrates the unprecedented quality of the 2D-TMD/metallic substrate interface at the atomic length scale. This can be a major step forward towards general interest.